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Heat and mass transfer in saturated porous media with ice inclusions
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Abstract

This paper continues the theoretical exploration of the heat and mass transfer in a biporous medium with the coupled phase trans-
formations. A more complicated system is considered, such as porous medium-ice-aqueous solution. General statements been formulated
for a simple medium [4], remain in force for the given system: the heat and mass fluxes each depend linearly on all thermodynamical
forces, the transport coefficients satisfy the Onsager reciprocal relations; the coupled phase transformations intensify significantly the
cross effects.

The presence of contaminants in water imparts the osmotic properties to the biporous medium and decreases the rate of the heat and
mass transfer in the system. The dissolved matter takes effect beginning with the concentration of �0.001 mol l�1. At the high concen-
tration of the aqueous solution (>0.1 mol l�1) the cross effects become negligible small and the medium loses its unique capacities.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The integral part of a porous medium is free space,
which is imagined as the pore set in the solid body [1].
The freezing point of liquid in a pore decreases with drop-
ping the size of the confined space. A pore size distribution
makes possible for the phase transformation in an interval
of the negative temperature. A quantity of the liquid phase
diminishes progressively with decreasing the temperature,
and simultaneously ice content increases [2].

In that system the transport processes have a peculiarity.
Not only are heat and liquid transferred in the system, but
also solid (ice) takes part in the transport processes. Ice
motion in a porous medium is realized due to regelation
[3], which involves the coupled phase transitions of melting
and freezing, whose locations are spatial separated. A nec-
essary condition for the movement of the solid is a hydrau-
lic connection between the freezing region and the melting
one. The coupled phase transition may significantly inten-
sify the cross effects [4]. The porous medium considered
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in that paper was saturated by pure water. In actual prac-
tice the dissolved matter not infrequently contaminates the
water. The influence of that factor on the heat and mass
transfer in the porous medium with ice inclusions consti-
tutes the subject matter.

We should examine a steady state of the heat and mass
transfer in the biporous medium that is saturated by aque-
ous solution and contains the ice inclusions. The free space
of the porous materials, as a rule, has irregular configura-
tion. That complicates significantly a rigorous studying of
the transfer processes. And so in the scientific practice
the heterogeneous media with the periodical structure are
used fairly often [5]. That simplifies a problem definition
and reduces the one to studying of the transfer processes
in an elementary cell.

2. Problem statement

Consider a porous medium with the bimodal pore distri-
bution (biporous medium, Fig. 1). Large pores (E1) are
equal spherical cavities, diameters of which are significantly
greater than the size of the pores in fine pored medium (E2).
The centres of the cavities are located at the rectangular
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Fig. 1. A fragment of the model porous medium. E1 – ice inclusion, E2 –
fine pored medium.

Nomenclature

b height of the cell [m], Fig. 2
C transport coefficient
cs solution concentration [mol m�3]
cs0 average solution concentration [mol m�3], Eq.

(35)
Dn diffusion coefficient [m2 s�1]
Jq heat flow at the base of the cell [W m�2]
Js molar flow of dissolved matter across the base of

the cell [mol m�2 s�1]
JV volume flow across the base of the cell [m s�1]
Jw molar flow of water across the base of the cell

[mol m�2 s�1]
jq heat flux [W m�2]
js molar flux of dissolved matter [mol m�2 s�1]
jV volume flux [m s�1]
jw molar water flux [mol m�2 s�1]
Kh hydroconductivity coefficient of fine-pored med-

ium E2 [m3 s kg�1]
n unit vector
Pi ice pressure component normal to an ice–water

interface [Pa]
p water pressure [Pa]
R radius of ice inclusion [m]
Rg gas constant, Rg = 8.31 J K�1 mol�1

Sa area of base [m2], Fig. 2
T temperature [K]
Vi molar volume of ice [m3 mol�1]

Vs partial molar volume of dissolved matter
[m3 mol�1]

Vw partial molar volume of water in solution
[m3 mol�1]

vi velocity of ice [m s�1]
X thermodynamical force

Greek symbols

a dimensionless parameter of the cell, pR2/Sa

b dimensionless parameter of the cell, 2R/b
j latent heat of fusion [J mol�1]
k1 thermal conductivity of ice [W m�1 K�1]
k2 thermal conductivity of fine-pored medium

[W m�1 K�1]
l chemical potential [J mol�1]

Subscripts

i ice
q heat
R surface of inclusion
s dissolved matter
w water

Other symbols

$ vector gradient operator
$b difference gradient operator, Eq. (20)
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lattice points. The thermodynamical conditions provide
maintenance of ice in the cavities and forbid the ice from
penetrating in the fine pored medium. Gas is absent, liquid
is incompressible, solids (ice and framework of porous
medium) are rigid. The fine pored medium is permeable
for the fluid, which is the aqueous solution. A dissolved
matter and a liquid water do not penetrate into ice. The
ice moves relative to the mineral framework. The surface
of the framework is inactive for chemical, ion-exchange,
and other reactions. The elements of the heterogeneous
medium considered (E1 and E2, Fig. 1) are isotropic each
taken separately.

The problem of the steady-state heat and mass transfer
in the porous medium as whole reduces to defining the heat
and mass (water and dissolved matter) flows through the
elementary cell, on the bases of which the thermodynamical
values of the temperature, the liquid pressure and the solu-
tion concentration are given. The lateral faces of the cell
are impermeable for heat and matter. All conductivity
coefficients will be accepted as constants. Fix the Cartesian
co-ordinate system to the mineral frame of the element E2.

Heat transport in the elements of E1 and E2 obeys a
Fourier conduction type law:

jq ¼ �kirT ; i ¼ 1; 2 ð1Þ

where the index i denotes the element Ei.
Assume that the convective transfer of energy may be

neglected in comparison to the conductive one. The con-
versation of energy and Fourier’s law give Laplace’s equa-
tion for defining the temperature in the cell’s elements:

DT ¼ 0 ð2Þ
with the boundary conditions as follows:
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at the faces of the cell

T jz¼�b=2 ¼ T 1; T jz¼b=2 ¼ T 2;
oT
onb
¼ 0 ð3Þ

where o
onb

is the normal derivative directed to the lateral

area of the cell;

at the surface of the ice inclusion

T jr¼R�0 ¼ T jr¼Rþ0 ðcontinuity of temperatureÞ ð4Þ

�k1

oT
or

����
r¼R�0

� �k2

oT
or

����
r¼Rþ0

� �
¼ jvi cos h

V i

ðheat balanceÞ

ð5Þ
where (r,h) – radius and angle in spherical co-ordinate sys-
tem (Fig. 2).

The liquid (aqueous solution) flows only in fine pored
medium E2 and is subjected to Darcy’s law:

jV ¼ �Khrp ð6Þ
where Kh is hydroconductivity coefficient of the element E2.

The volume flux is expressed in terms of molar fluxes [6]:

jV ¼ V wjw þ V sjs; ð7Þ
The continuity of mass and Darcy’s law lead to Laplace’s
equation for liquid pressure:

Dp ¼ 0 ð8Þ
with the boundary conditions at the faces of the cell

pjz¼�b=2 ¼ p1; pjz¼b=2 ¼ p2;
op
onb
¼ 0 ð9Þ

Eq. (7) and two conditions at the inclusion surface as
follows:

Impermeability of ice for an impurity

jsrðR; hÞ ¼ 0 ð10Þ
and continuity of water

jwrðR; hÞ ¼ vi cos h=V i ð11Þ
jw

vi

Sa
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Fig. 2. Scheme of fluxes in an elementary cell. Qlat is heat production at
the phase transition surface.
where the index r denotes the radial component in the
spherical co-ordinate, allow to connect the volume flow
jVr(R,h) with the ice velocity vi: jVr(R,h) = Vwvi cosh/Vi.
This equation and Darcy’s law lead to a relation at the

surface of the ice inclusion

�Kh

op
or

����
r¼Rþ0

¼ V w

V i

vi cos h ð12Þ

The movement of the substance dissolved in water real-
izes by two following ways: convective transport and diffu-
sion. A Fick law gives a relation for the dissolved matter
flux js:

js ¼ csjV � Dnrcs ð13Þ
Fick’s law (13) and the continuity of mass lead to a Fick

equation for defining the concentration cs in the element
E2:

Dcs �r � ðcsjV=DnÞ ¼ 0 ð14Þ

with the boundary condition at the faces of the cell

csjz¼�b=2 ¼ cs1; csjz¼b=2 ¼ cs2;
ocs

onb
¼ 0 ð15Þ

Combining the rejection relation (10), the Fick law (13),
the definition (7) and the water balance Eq. (11) gives the
boundary condition at the surface of the ice inclusion

ocs

or
� V wvi cos h

V iDn

cs

� �����
r¼Rþ0

¼ 0 ð16Þ

The equation set (2)–(5), (8)–(9), (12) and (14)–(16) allows
to define the distribution of the temperature, the pressure
and the concentration in space and, as a result, to find
the heat and mass fluxes through the bases of the cell if
only an ice velocity is known.

In a steady state the ice velocity is constant in time and
therefore a sum of forces, those act on the inclusion is equal
to zero. The forces of two types applied to the ice – bulk
and surface. The bulk forces are initiated by external force
fields (for example, gravitational). The total bulk force Fex

must be balanced by the surface ones.
Two peculiarities: ice and mineral are disjoined by liquid

layer that eliminates an immediate contact between solids
(1) and the tangential surface force is negligible small in
comparison to the normal one (2), allow to write the
mechanical balance of the ice inclusion as follows [4]:

Fex �
Z

SR

P iRndS ¼ 0 ð17Þ

where n is a unit vector perpendicular to dS, PiR is the ice
pressure component normal to an interface.

Assume a postulate of local thermodynamical equilib-
rium to be valid. The condition for two phases to be in
equilibrium with respect to any species is that the chemical
potential of that species should have the same value in the
two phases [7]. Applying that rule for ice and water near a
mineral surface gives
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Fig. 3. Standard transport coefficients versus volumetric part of ice ni. Lines are constructed from analytical formulas for two cell with infinite (solid lines)
and zero (dot lines) horizontal conductivity. Symbols are the numerical calculation with an accuracy of �5%.
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liðT R; P iRÞ ¼ lwðT R; pR; csRÞ ð18Þ
where li, lw are chemical potentials of pure ice and water
in solution.

The expansion in series near the phase transition point
of bulk pure water and ice at atmospheric pressure results
in the following relationship:

V iðP iR � p0Þ � V wðpR � p0Þ ¼ �
jðT R � T 0Þ

T 0

� cwcsR ð19Þ

where T0 = 273.15 K; p0 = 0.1 MPa; cw ¼ � olw

ocs
(for ideal

solution cw = RgTVw).
The relation set (3)–(5), (9), (12), (15) and (16) is the

boundary condition for the heat and mass transfer problem
that is presented by equations for the temperature (2), the
liquid pressure (8) and the concentration (14).

In this paper the problem will be solved by the anisotropic
conductivity method [4], that allows finding the solution in
an analytical form. The method is based on the replacement
of the isotropic elements by the anisotropic ones.

In the direction of the imposed gradients parallel to the
streamwise, the conductivity coefficients of the elements are
maintained to be real, and in the direction perpendicular to
selected, the conductivities are taken to be equal zero or
infinity. Therefore the problem will be solved for two cells,
the transport coefficients of which gives the extreme points
of intervals. The transport coefficients of the cell with the
isotropic elements fall into those intervals. The representa-
tive plots of some coefficients for the cell, fine-pored med-
ium of which to be saturated by pure water [4] are shown in
Fig. 3.

3. Heat transfer and filtration

A problem consists in defining the heat and liquid flows
across the bases of the cell (Fig. 2) at the boundary condi-
tions (3)–(5), (9) and (12). A distinctive feature of the sys-
tem involved is the ice–water phase transition that
generates the heat and liquid sources. A solution of this
problem repeats, in many respects, the solution of the ana-
logical problem for the porous medium with ice and pure
water [4]. Therefore only the final results will be presented
as follows: the fluxes through the cell’s bases and the tem-
perature and pressure values at the inclusion surface.

3.1. Infinite horizontal conductivity

J q ¼ k2 �
jvi

V iDk21

� rbT � jvi

V iDk21

� �
� f1

bþ f1ð1� bÞ

� �
ð20Þ

T RðhÞ ¼

jvi

V iDk21

R coshþ rbT � jvi

V iDk21

� �

� R
bþ f1ð1� bÞ

ln
1þ et cosh
1� et cosh

����
����

ln
1þ et

1� et

����
����
þ T m; Dk21 < 0

jvi

V iDk21

R coshþ rbT � jvi

V iDk21

� �

� R
bþ f1ð1� bÞ �

arctgðet coshÞ
arctget

þ T m; Dk21 > 0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð21Þ

J V ¼
V wvi

V i

� Khrbp þ V wvi

V i

� �
f2

bþ f2 1� bð Þ ð22Þ

pR ¼ �
V wvi

V iKh

R cos hþ rbp þ V wvi

V iKh

� �
R

bþ f2ð1� bÞ

� arctgðep cos hÞ
arctg ep

þ pm ð23Þ

where rbT ¼ T 2�T 1

b ; rbp ¼ p2�p1

b ; T m ¼ T 1þT 2

2
; pm ¼ p1þp2

2
;

Dk21 = k2 � k1 and b, et, ep, f1, f2 are dimensionless
parameters:
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f1 ¼

2et

ð1� e2
t Þ ln

1þ et

1� et

����
����
; Dk21 < 0

et

ð1þ e2
t Þarctg et

; Dk21 > 0

;

8>>>><
>>>>:

f 2 ¼
ep

ð1þ e2
pÞarctg ep

; et ¼
R
et

; ep ¼
R
ep

;

e2
t ¼

k2Sa � Dk21pR2

pjDk21j
; e2

p ¼
Sa � pR2

p

3.2. Zero horizontal conductivity

J q ¼ �k2I3rbT � k2jab
k1V i

viI1 ð24Þ

T RðhÞ ¼
k2

k1

R cos h
1þ e0j cos hj rbT � j

V i

1� b cos hj jð Þ
k2

vi

� �
þ T m

ð25Þ

J V ¼
V w

V i

avi � ð1� aÞKhrbp ð26Þ

pRðhÞ ¼
p2 þ V wR

V ibKh
ð1� b cos hÞvi; 0 6 h < p=2

p1 � V wR
V ibKh
ð1þ b cos hÞvi; p=2 6 h 6 p

(
ð27Þ

where a, e0, I1, I3 are dimensionless parameters:

e0 ¼ b
k2

k1

� 1

� �
; I1 ¼

1

e0

� 2

e2
0

þ 2

e3
0

lnð1þ e0Þ;

I3 ¼ ð1� aÞ þ 2a
e2

0

½e0 � lnð1þ e0Þ�
Z
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Fig. 4. Scheme of mass fluxes through the selected layer at infinite
horizontal conductivity.
4. Diffusion

The statement of the problem presented in Section 1
implies finding a dissolved matter distribution in the cell.
That is needed to define the fluxes of dissolved substance
through the bases of the cell at the boundary conditions
(15) and (16).

We shall accept a sequence of the simplifying supposi-
tions. The dissolved matter is transported only in the fine
pored medium E2 because the impurities are rejected by
ice completely. The transfer of the dissolved matter in the
region E2 obeys Fick’s law (13). The relations will be
obtained in the linear approximation relative to the fluxes
and the gradients of thermodynamical values (temperature,
pressure and concentration); i.e. the system is near the
equilibrium state.

The diffusion problem will be solved by the anisotropic
conductivity method for two cells with the infinite and zero
horizontal conductivities.

4.1. Infinite horizontal conductivity

The term infinite conductivity relates to both filtration
and diffusion. The solution concentration does not depend
on horizontal co-ordinates (x and y) due to the accepted
supposition. In the direction of the Z-axis a diffusion coef-
ficient equals a real value Dn. In the interior of the cell the
production sources of the dissolved matter is absent, there-
fore the steady-state total flow of the dissolved substance
Qs through any horizontal section is fixed:

Qs ¼ J sSa ¼ const ð28Þ
where Js is the dissolved matter flux through the bases of
the cell.

In the region of z 2 [�b/2,�R] and [R,b/2] the medium
is homogeneous (Fig. 4). The volume flux jV and the molar
flux of the dissolved matter js in direction of Z-axis are the
constants and equal the fluxes across the cell’s bases JV and
Js, respectively. The solution concentration cs depends only
on z-co-ordinate. A relation between the matter flows and
the concentration at sections z = ±R, ±b may be found
from Fick’s equation (14). In the linear approximation rel-
ative to the value of JV the flow Js is following

J s ¼
cs1 þ c0s1

2
� J V � Dn

c0s1 � cs1

b=2� R
ð29Þ

J s ¼
cs2 þ c0s2

2
� J V � Dn

cs2 � c0s2

b=2� R
ð30Þ

In the region of z 2 [�R,R] the dissolved matter moves
only in the fine pored medium E2, therefore the mass bal-
ance is presented as follows:

jsðzÞ � S2ðzÞ ¼ Qs ð31Þ
where js is z-component of the dissolved matter molar flux,
S2 is area of the element E2 at the horizontal section z:
S2(z) = Sa � p(R2 � z2). Substituting js in (31) from Fick’s
law (13) gives an equation for defining of a function of
cs(z):

dcsðzÞ
dz
� jVðzÞ

Dn

csðzÞ ¼ �
Qs

DnS2ðzÞ
ð32Þ

A dependence of jV(z) must be found from the solution
of the filtration problem. In the section of z = ±R the
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continuity conditions for the concentration are realized:
csð�RÞ ¼ c0s1 and csðRÞ ¼ c0s2. Taking into account the first
condition the solution of the differential equation (32) is
presented as follow [8]:

csðzÞ ¼ e�F ðzÞ c0s1 �
Qs

Dn

Z z

�R

eF ðfÞ

S2ðfÞ
df

� �
ð33Þ

where F ðzÞ ¼ � 1
Dn

R z
�R jVðfÞdf.

Linearizing Eq. (33) relative to the fluxes of Js and
jV and using the second condition for concentration
(csðRÞ ¼ c0s2Þ and Eqs. (28)–(30) gives an expression for
the flux Js of the dissolved matter across the cell’s bases:

J s ¼
f2

bþ ð1� bÞf2

½�Dnrbcs � cs0Khrbp� ð34Þ

and a concentration distribution at the ice inclusion
surface:

csRðhÞ ¼
V w

V i

cs0vi

Dn

R cos hþ rbcs �
V w

V i

cs0vi

Dn

� �
R

bþ f2ð1� bÞ

� arctgðep cos hÞ
arctgep

þ Ks ð35Þ

where rbcs ¼ cs2�cs1

b , cs0 ¼ cs1þcs2

2
, Ks are constants.

The distinctive feature of Eq. (34) is that the dissolved
matter flow through the cell is defined only by the concen-
tration and pressure gradients and does not depends on the
ice velocity.

4.2. Zero horizontal conductivity

The sreamlines of the water and the dissolved matter are
parallel to Z-axis due to the accepted anisotropy. Since the
ice is impermeable for impurities, the dissolved matter may
be transported only in the homogeneous region r > R

(Fig. 5, element E2). In the linear approximation the dis-
solved matter flux Js2 in this region is presented as follows:

J s2 ¼ �Dn

cs2 � cs1

b
þ cs0J V2 ¼ �ðDnrbcs þ cs0KhrbpÞ
Z

0

R
θ

r
Δr

Js2
JV2

JV1

JV1

vi

h2

h1

h2

E1

E2

Sa

ΔSR

 p2, cs2

p2', c'
s2

p1', c'
s1

 p1, cs1

Fig. 5. Scheme of mass fluxes through the selected layer at zero horizontal
conductivity.
And an average value of the flux Js through the cell equals

J s ¼ �ð1� aÞðDnrbcs þ cs0KhrbpÞ ð36Þ

Define the concentration of the dissolved matter near
the inclusion surface. Since the impurities are rejected
by ice, z-component of the dissolved matter flux in the
region r < R is equal to zero. In the linear approximation
the diffusion law (13) may be written in the difference
form:

�Dn

c0s1 � cs1

h2

þ cs0J V1 ¼ 0 ð37Þ

�Dn

cs2 � c0s2

h2

þ cs0J V1 ¼ 0 ð38Þ

where JV1 is the volume flow of the solution in the region
r < R.

Combining the relation of the water balance (11), the
rejection condition (10) and the definition (7) give an
expression for a value of JV1:

J V1 ¼ V wvi=V i ð39Þ

The values of c0s1 and c0s2 in Eqs. (37) and (38) for given r

define the concentration csR at the inclusion surface.
Substituting JV1 from (39) in (37) and (38) gives

csRðhÞ ¼
cs2 � V wcs0R

V ibDn
ð1� b cos hÞvi; 0 6 h < p=2

cs1 þ V wcs0R
V ibDn

ð1þ b cos hÞvi; p=2 6 h 6 p

(

ð40Þ
5. Ice velocity and transport coefficients

For finding the ice velocity it is needed to use two inde-
pendent conditions: the mechanical equilibrium of the
inclusion (17) and the local thermodynamical equilibrium
(19).

Assume that the external force is negligible small
(Fex = 0). Since the values of TR, pR, csR and hence the
pressure PiR (22) are axially symmetrical (see (21), (23),
(25), (27), (35) and (40), the integral (17) is converted in
the following expression:

V w

V i

H0ðpRÞ �
j

T 0V i

H0ðT RÞ �
cw

V i

H0ðcsRÞ ¼ 0 ð41Þ

where H0 is a linear functional: H0ðf Þ ¼
R p

0 f ðhÞ cos h sin
hdh.

5.1. Infinite horizontal conductivity

The term infinite conductivity relates to heat transfer, fil-
tration and diffusion. Substituting Eqs. (21), (23) and (35)
in Eq. (41) gives an ice velocity as a linear function of
the temperature, pressure and concentration gradients

vi ¼ �xp1rbp � xt1rbT � xs1rbcs ð42Þ
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where

xp1 ¼
V w

V i

fp

den1

; xt1 ¼�
j

T 0V i

ft

den1

; xs1 ¼�
cw

V i

fp

den1

;

ft ¼
ð1�f1Þ

½bþð1�bÞf1 �
� ðe

2
t�1Þ
e2
t
; Dk21 < 0

ð1�f1Þ
½bþð1�bÞf1 �

� ðe
2
tþ1Þ
e2
t
; Dk21 > 0

8><
>: ;

f p ¼
ð1� f2Þð1þ e2

pÞ
½bþ ð1� bÞf2�e2

p

den1 ¼
V w

V i

� �2

fp�
2

3

� �
1

Kh

þ j
V i

� �2 ðft � 2=3Þ
T 0Dk21

þ cwV wcs0

V 2
i Dn

fp �
2

3

� �

Substituting then Eq. (42) in Eqs. (20) and (22) having in
view Eq. (34), gives the fluxes as the linear functions of
the imposed gradients

J V ¼ Cpprbp þ Cpsrbcs þ CpqrbT=T ð43Þ
J s ¼ Csprbp þ Cssrbcs þ CsqrbT=T ð44Þ
J q ¼ Cqprbp þ Cqsrbcs þ CqqrbT=T ð45Þ

with transport coefficients as follows

Cpp ¼ � Khfw þ
V w

V i

abfpxp1

� �
; Cps ¼ �

V w

V i

abfpxs1;

Cpq ¼ �
V w

V i

abfpxt1T 0;

Csp ¼ �cs0Khfw; Css ¼ �Dnfw; Csq ¼ 0; ð46Þ

Cqp ¼
j
V i

� abftxp1; Cqs ¼
j
V i

� abftxs1;

Cqq ¼
j
V i

� abftxt1 � k2fq

� �
T 0

Compared to the simple sample, such as porous med-
ium-ice-pure water [4], the system considered has an addi-
tional thermodynamical degree of freedom. As a result, a
number of the transport coefficients increases and becomes
equal to 9. But the coefficients are not independent and sat-
isfy some relations which will be obtained below.

Introduce the standard values of the fluxes (Jw,Js,Jq)
and the corresponding thermodynamical forces (Xw,
Xs,Xq), as is customary in irreversible thermodynamics [6]:

X w ¼ V wrbp � cwrbcs; X s ¼ V srbp þ cw

cs

cwrbcs;

X q ¼
rbT

T
; J V ¼ V wJ w þ V sJ s

where cw is molar concentration of water, Jw is molar flux of
water through the bases of the cell. Writing Eqs. (43)–(45) in
the terms of the standard values and assuming the symme-
try of the standard cross coefficient gives the three relations:

cs

1

V w

ðCpp � V sCspÞ þ
1

cw

ðCps � V sCssÞ
� �

¼ cwCsp �
csV s

cw

Css;
1

V w

ðCpq � V sCsqÞ

¼ cwCqp �
csV s

cw

Cqs; Csq ¼ cs Cqp þ
V w

cw

Cqs

� �
which are verified by direct substituting the known C-coef-
ficients (46). By that the standard transport coefficients are
proved to be symmetrical for the system considered and
therefore Onsager’s reciprocal postulate occurs to be valid.

5.2. Zero horizontal conductivity

At the inclusion surface Eqs. (25), (27) and (40) define
the values of the temperature, the liquid pressure and the
concentration. Substituting those functions in Eq. (41)
and algebraic transforming gives an ice velocity:

vi ¼ �xp0rbp � xt0rbT � xs0rbcs ð47Þ
where

xp0 ¼
V w

V i

1

den0

; xt0 ¼ �
jk2

T 0V ik1

bI1

den0

; xs0 ¼ �
cw

V i

1

den0

;

den0 ¼
V w

V i

� �2

1� 2

3
b

� �
1

Kh

þ j
V i

� �2 bðI1 � bI2Þ
T 0k1

þ cwV wcs0b

V 2
i Dn

1� 2

3
b

� �
;

I2 ¼
2

3e0

� 1

e2
0

þ 2

e3
0

� 2

e4
0

lnð1þ e0Þ

Subsequent substituting (47) in (24) and (26) gives in com-
bination with (36) the equation set for the fluxes in the
form (43)–(45) with the transport coefficients as follows:

C0
pp ¼ � ð1� aÞKh þ a

V w

V i

xp0

� �
; C0

ps ¼ �a
V w

V i

xs0;

C0
pq ¼ �a

V w

V i

T 0xt0;

C0
sp ¼ �ð1� aÞcs0Kh; C0

ss ¼ �ð1� aÞDn; C0
sq ¼ 0; ð48Þ

C0
qp ¼

k2j
k1V i

ab � I1xp0; C0
qs ¼

k2j
k1V i

ab � I1xs0;

C0
qq ¼

k2j
k1V i

ab � I1xt0 � k2I3

� �
T 0

which ensure the symmetry of the standard transport
coefficients.

The additional relations for C-coefficients follow from
the physical properties of the system. When the ice velocity
is equal to zero then a flux of heat or volume depends only
on the ‘‘direct’’ gradient (temperature or pressure; see (20),
(22), (24) and (26)). The type and the quantity of those rela-
tions are defined, in general, by the structure of porous
medium and the form of the input transfer equations.
The detailed studying of this problem is beyond the pur-
pose of this paper. Notice only that the additional equation
for the system to be considered are following: Csq = 0 (see
(46) and (48)).

6. Properties of the porous medium with inclusions

In this part the calculation results are presented for heat
transfer and osmosis in the special biporous materials (see
Fig. 1).
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6.1. Effective thermal conductivity

A value of the heat flux through the medium depends on
the temperature gradient as well as the pressure and con-
centration gradients (45). Consider open and closed
systems.

In the open system the pressure and concentration drop
will be assigned equal to zero (p1 = p2, cs1 = cs2). The heat
transport may be accompanied by the mass flows. An equa-
tion for the thermal conductivity effective coefficient ~k0

follows from Eq. (45):

~k0 ¼ �Cqq=T 0 ð49Þ
In the closed system the mass fluxes through the bound-

ary are equal to zero (JV = 0, Js = 0). The additional rela-
tions between the gradients follow from Eqs. (43) and (44):

Cpprbp þ Cpsrbcs þ CpqX q ¼ 0 ð50Þ
Csprbp þ Cssrbcs þ CsqX q ¼ 0 ð51Þ

The effective coefficient of thermal conductivity ~kC is found
from the equation set (45), (50) and (51):

~kC ¼ �
Cqq þ CqpApq þ CqsAsq

T 0

ð52Þ

where Apq ¼ CsqCps�CpqCss

CssCpp�CspCps
; Asq ¼ CpqCsp�CsqCpp

CssCpp�CpsCsp
.

All the numerical calculations were produced for the
cubic cell, the elements of which hold the thermal conduc-
tivity coefficients as follow: k1 = 2.2 W m�1 K�1,
k2 = 1.54 W m�1 K�1.

In the biporous medium with the ice inclusions the mat-
ter dissolved in the water influences on the thermal conduc-
tivity of the system beginning with concentration
�0.001 mol l�1 (Fig. 6).

The thermal conductivity of the open system is greater
than the one for the closed one. This distinction may be sig-
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Fig. 6. Thermal conductivity effective coefficient of a cubic cell in the condition
solution concentration cs0 at the different hydroconductivity coefficients of fine
�10�15 with zero (a) and infinite (b) horizontal conductivity. Volumetric ice c
nificant at the high conductivity of the medium (curves 1
and 2, Fig. 6).

An extreme value of concentration, at which ice move-
ment does not influence on thermal conductivity, depends
on the type of the system. In the closed system that value
is about 0.01 mol l�1, and in the open one an extreme con-
centration is on the one order greater (0.1 mol l�1).

6.2. Osmosis

The osmotic effect is studied mostly in closed system and
is disclosed in a pressure difference of solutions, which are
separated by a porous membrane and have the different
concentration. A value of the effect is defined by an osmotic
coefficient Kos that is equal to one for the ideal semiperme-
able membrane. A relation between the pressure difference
and the concentration difference is presented as follows:

Dp ¼ KosRgT Dcs ð53Þ

The value of the osmotic effect is defined at isothermal con-
ditions (Xq = 0) and at the absence of the volume flow
(JV = 0). Transforming Eq. (43) having in view (53) gives
an expression for the osmotic coefficient:

Kos ¼ �
Cps

CppRgT 0

All calculation was produced for ideal solution (see (19)).
The value of Kos for the cells with the zero and infinite hor-
izontal conductivities is very close (Fig. 7). The osmotic
coefficient increases with decreasing the hydroconductivity
of porous medium and the solution concentration; i.e. the
low-permeable and low-contaminated medium is almost
ideal semipermeable membrane. For example, at Kh <
10�14 m3 s kg�1 and cs < 0.01 mol l�1 the coefficient of Kos

is greater than 0.8. It must be emphasized that the sample
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s of the open (solid lines) and closed (dot lines) system versus the average
pored medium (E2) Kh [m3s kg�1]: (1) �10�12; (2) �10�13; (3) �10�14; (4)
ontent equals 0.4, Dn = 10�10 m2 s�1.
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begins to take on the osmotic properties as soon as appear-
ing the ice into the medium.

7. Conclusions

A biporous media with coupled phase transformations
possess the special properties due to the great value of the
latent heat of fusion, the impermeability of ice for liquid
substance and the complete rejection of impurities by ice.

The presence of foreign matters in liquid phase change a
character of heat and mass processes in the system. The
unique properties of the medium with the coupled phase
transformations vanish at the high concentration of the
solution.

Based on results of two papers (presented and [4]), a
supposition may be made that the Onsager reciprocal rela-
tions hold for the heterogeneous system with phase trans-
formations if only two conditions are realized as follow:
in homogeneous parts of the system the Onsager reciprocal
relations between the (linear) transport coefficients are
valid and the local thermodynamical equilibrium remains
in force all over the system.

The interesting properties of the porous media consid-
ered bring up the question: Is the regelation phenomena
the unique property of ice only? The basic equations of
the theory do not forbid a regelation for other matters.
There are indirect indications of such possibility [9,10].
The special experimental investigations are needed to pro-
vide the clear answer. The more so as the peculiar properties
of the biporous media with coupled phase transformations
may be used for the development of the new methods in the
heterogeneous catalysis technology and the metallurgy.
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